VARIATION IN THE STABLE-HYDROGEN ISOTOPE COMPOSITION OF NORTHERN GOSHAWK FEATHERS: RELEVANCE TO THE STUDY OF MIGRATORY ORIGINS

The Condor ◽  
2005 ◽  
Vol 107 (3) ◽  
pp. 547 ◽  
Author(s):  
Adam D. Smith ◽  
Alfred M. Dufty
The Condor ◽  
2005 ◽  
Vol 107 (3) ◽  
pp. 547-558 ◽  
Author(s):  
Adam D. Smith ◽  
Alfred M. Dufty

Abstract The analysis of stable-hydrogen isotope ratios in feathers (δDf) allows researchers to investigate avian movements and distributions to an extent never before possible. Nonetheless, natural variation in δDf is poorly understood and, in particular, its implications for predictive models based on stable-hydrogen isotopes remain unclear. We employed hierarchical linear modeling to explore multiple levels of variation in the stable-hydrogen isotope composition of Northern Goshawk (Accipiter gentilis) feathers. We examined (1) inter-individual variation among goshawks from the same nest, and (2) intra-individual variation between multiple feathers from the same individual. Additionally, we assessed the importance of several factors (e.g., geographic location, climate, age, and sex characteristics) in explaining variation in δDf. Variation among individuals was nearly eight times the magnitude of variation within an individual, although age differences explained most of this inter-individual variation. In contrast, most variation in δD values between multiple feathers from an individual remained unexplained. Additionally, we suggest temporal patterns of δD in precipitation (δDp) as a potential explanation for the geographic variability in age-related differences that has precluded the description of movement patterns of adult raptors using δDf. Furthermore, intra-individual variability necessitates consistency in feather selection and careful interpretation of δDf-based models incorporating multiple feather types. Finally, although useful for describing the movements of groups of individuals, we suggest that variability inherent to environmental and intra-individual patterns of δDp and δDf, respectively, precludes the use of stable-hydrogen isotopes to describe movements of individual birds. Variación en la Composición de Isótopos Estables de Hidrógeno de las Plumas de Accipiter gentilis: Relevancia para los Estudios sobre el Origen de la Migración Resumen. El análisis de los cocientes de isótopos estables de hidrógeno presentes en las plumas (δDf) permite a los investigadores estudiar los movimientos y distribuciones de las aves en un grado nunca antes posible. Sin embargo, la variación natural en δDf es poco entendida, y particularmente sus implicaciones sobre modelos que hacen predicciones con base en isótopos estables de hidrógeno aún permanecen poco claras. Empleamos un modelo lineal jerárquico para explorar múltiples niveles de variación en la composición de isótopos estables de hidrógeno en las plumas de Accipiter gentiles. Examinamos (1) la variación entre individuos de un mismo nido y (2) la variación entre varias plumas de un mismo individuo. Además, determinamos la importancia de varios factores (e.g., aislamiento geográfico, clima, edad y características sexuales) para explicar las variaciones en δDf. La variación entre individuos fue casi ocho veces mayor que la variación en un mismo individuo, aunque diferencias en la edad explicaron la mayoría de esta variación entre individuos. De manera contrastante, la mayor parte de la variación en los valores de δD entre varias plumas de un mismo individuo permaneció inexplicada. Además, sugerimos patrones temporales de δD en la precipitación (δDp) como una posible explicación para la variabilidad geográfica en las diferencias relacionadas con la edad que han imposibilitado la descripción de los patrones de movimiento de aves rapaces adultas utilizando δDf. Asimismo, la variabilidad intra-individual requiere que exista coherencia en la selección de plumas y una interpretación cuidadosa de los modelos basados en δDf que incorporen múltiples tipos de plumas. Finalmente, a pesar de ser útiles para describir los movimientos de grupos de individuos, sugerimos que la variabilidad inherente al ambiente y los patrones intra-individuos de δDp y δDf, respectivamente, impiden el uso de isótopos estables de hidrógeno para describir los movimientos de aves individuales.


2021 ◽  
Author(s):  
Meisha Holloway-Philips ◽  
Jochem Baan ◽  
Daniel Nelson ◽  
Guillaume Tcherkez ◽  
Ansgar Kahmen

<p>The hydrogen isotope composition (δ<sup>2</sup>H) of cellulose has been used to assess ecohydrological processes and carries metabolic information, adding new understanding to how plants respond to environmental change. However, experimental approaches to isolate drivers of δ<sup>2</sup>H variation is limited to the Yakir & DeNiro model (1990), which is difficult to implement and largely unvalidated. Notably, the two biosynthetic fractionation factors in the model, associated with photosynthetic (ε<sub>A</sub>) and post-photosynthetic (ε<sub>H</sub>) processes are currently accepted as constants, and the third parameter – the extent to which organic molecules exchange hydrogen (f<sub>H</sub>) with local water – is usually tuned in order to resolve the difference between modelled and observed cellulose δ<sup>2</sup>H values. Thus, by virtue, the metabolically interpretable parameter is only f<sub>H</sub>, whilst from theory, metabolic flux rates will also impact on the apparent fractionations. To overcome part of this limitation, we measured the δ<sup>2</sup>H of extracted leaf sucrose from fully-expanded leaves of seven species and a phosphoglucomutase ‘starchless’ mutant of tobacco to estimate the isotopic offset between sucrose and leaf water (ε<sub>sucrose</sub>). Sucrose δ<sup>2</sup>H explained ~60% of the δ<sup>2</sup>H variation observed in cellulose. In general, ε<sub>sucrose</sub> was higher (range: -203‰ to -114‰; mean: -151 ± 21‰) than the currently accepted value of -171‰ (ε<sub>A</sub>) reflecting <sup>2</sup>H-enrichment downstream of triose-phosphate export from the chloroplast, with statistical differences in ε<sub>sucrose</sub> observed between species estimates. The remaining δ<sup>2</sup>H variation in cellulose was explained by species differences in f<sub>H </sub>(estimated by assuming ε<sub>H </sub>= +158‰). We also tested possible links between model parameters and plant metabolism. ε<sub>sucrose</sub> was positively related to dark respiration (R<sup>2</sup>=0.27) suggesting an important branch point influencing sugar δ<sup>2</sup>H. In addition, f<sub>H</sub> was positively related to the turnover time (τ) of water-soluble carbohydrates (R<sup>2</sup>=0.38), but only when estimated using fixed ε<sub>A </sub>= -171‰. To decipher and isolate the “metabolic” information contained within δ<sup>2</sup>H values of cellulose it will be important to assess δ<sup>2</sup>H values of non-structural carbohydrates so that hydrogen isotope fractionation during sugar metabolism can be better understood. This study provides the first attempt at such measurements showing species differences in both source and sink processes are important in understanding δ<sup>2</sup>H variation of cellulose.</p>


2014 ◽  
Vol 62 (20) ◽  
pp. 4493-4501 ◽  
Author(s):  
Luanzi Sun ◽  
Karl Auerswald ◽  
Rudi Schäufele ◽  
Hans Schnyder

1977 ◽  
Vol 60 (3) ◽  
pp. 311-315 ◽  
Author(s):  
Yoshimasu Kuroda ◽  
Tetsuro Suzuoki ◽  
Sadao Matsuo

1998 ◽  
Vol 145 (3-4) ◽  
pp. 249-261 ◽  
Author(s):  
Christophe Lécuyer ◽  
Philippe Gillet ◽  
François Robert

2008 ◽  
Vol 247 (1-2) ◽  
pp. 266-281 ◽  
Author(s):  
Sophie Verheyden ◽  
Dominique Genty ◽  
Olivier Cattani ◽  
Martin R. van Breukelen

2013 ◽  
Vol 132-133 ◽  
pp. 164-172 ◽  
Author(s):  
Huiling Bai ◽  
Lin Peng ◽  
Junji Cao ◽  
Xiaofeng Liu ◽  
Jianqiang Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document